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Key concepts

Bayesian inference in finite, parametric models
• we contrast maximum likelihood with Bayesian inference
• when both prior and likelihood are Gaussian, all calculations are tractable

• the posterior on the parameters is Gaussian
• the predictive distribution is Gaussian
• the marginal likelihood is tractable

• we observe the contrast
• in maximum likelihood the data fit gets better with larger models

(overfitting)
• the marginal likelihood prefers an intermediate model size (Occam’s

Razor)
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Maximum likelihood, parametric model

Supervised parametric learning:
• data: x, y
• model M: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w,M) ∝
N∏
n=1

exp(− 1
2 (yn − fw(xn))

2/σ2
noise).

Maximize the likelihood:

wML = argmax
w

p(y|x, w,M).

Make predictions, by plugging in the ML estimate:

p(y∗|x∗, wML,M)
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Bayesian inference, parametric model

Posterior parameter distribution by Bayes rule (p(a|b) = p(a)p(b|a)/p(b)):

p(w|x, y,M) =
p(w|M)p(y|x, w,M)

p(y|x,M)

Making predictions (marginalizing out the parameters):

p(y∗|x∗, x, y,M) =

∫
p(y∗, w|x, y, x∗,M)dw

=

∫
p(y∗|w, x∗,M)p(w|x, y,M)dw.

Marginal likelihood:

p(y|x,M) =

∫
p(w|x,M)p(y|x, w,M)dw
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Posterior and predictive distribution in detail

For a linear-in-the-parameters model with Gaussian priors and Gaussian noise:
• Gaussian prior on the weights: p(w|M) = N(w; 0, σ2

w I)
• Gaussian likelihood of the weights: p(y|x, w,M) = N(y; Φw, σ2

noise I)

Posterior parameter distribution by Bayes rule p(a|b) = p(a)p(b|a)/p(b):

p(w|x, y,M) =
p(w|M)p(y|x, w,M)

p(y|x,M)
= N(w; µ, Σ)

Σ =
(
σ−2

noiseΦ
>Φ+ σ−2

w I
)−1

and µ =
(
Φ>Φ+

σ2
noise

σ2
w

I
)−1

Φ>y

The predictive distribution is given by:

p(y∗|x∗, x, y,M) =

∫
p(y∗|w, x∗,M)p(w|x, y,M)dw

= N(y∗; φ(x∗)
>µ, φ(x∗)

>Σφ(x∗) + σ
2
noise).
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Multiple explanations of the data
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Remember that a finite linear model f(xn) = φ(xn)
>w with prior on the weights

p(w) = N(w; 0,σ2
wI) has a posterior distribution

p(w|x, y,M) = N(w; µ, Σ) with
Σ =

(
σ−2

noiseΦ
>Φ+ σ−2

w

)−1

µ =
(
Φ>Φ+

σ2
noise
σ2

w
I
)−1

Φ>y

and predictive distribution

p(y∗|x∗, x, y,M) = N(y∗; φ(x∗)
>µ, φ(x∗)

>Σφ(x∗) + σ
2
noise I)
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Marginal likelihood (Evidence) of our polynomials

Marginal likelihood, or ”evidence” of a finite linear model:

p(y|x,M) =

∫
p(w|x,M)p(y|x, w,M)dw

= N(y; 0,σ2
w ΦΦ> + σ2

noise I).

Luckily for Gaussian noise there is a closed-form analytical solution!
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M: Degree of the polynomial
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not simpler, not more complex.
• Too simple models consistently

miss most data.
• Too complex models frequently

miss some data.
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